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1:1 (v/v) acetonitrile-water gave colorless crystals of 1: yield 0.11 g 
(40%); mp 273-277 0C dec; IR (KBr) i w 3020, 2960, 1480,1300, 1130, 
1040 cm"1; NMR (Me2SO-^6) S 7.30 (s, 16 H, arom), 3.96 (s, 16 H, 
CH2), 3.18(s, 24H1CH3). Anal. Calcd for C40H56N4B4F16^H2O: C, 
49.08; H, 6.15. Found: C, 49.22; H, 5.78. 

JV,N,N',N',N'',JV''-Hexametbyl-p-xyiylenediainnioniuin tetrafluoro-
borate (9) was prepared from 1.54 g (8 mmol) of N,N,N',N'-tetT&-
methyl-p-xylylenediamine and 2.5 g (17 mmol) of trimethyloxonium 
tetrafluoroborate in dry methylene chloride in a similar manner as de­
scribed for 1. Recrystallization from 1:1 (v/v) acetonitrile-water gave 
colorless needles of 9: yield 2.53 g (80%); mp >280 0C dec. 

Kinetic Measurements. A 2.0-mL solution of 9.9 X 10"6 M p-nitro-
phenyl chloroacetate (7a), a-naphthyl chloroacetate (7b), /3-naphthyl 
chloroacetate (7c), or a-chloro-/3-naphthyl chloroacetate (14) in a 
phosphate ('/is or '/«> M) (pH 6.96 or 8.10) or in a borate ('/is or '/60 
M) buffer solution (pH 6.96 or 8.10) was put into a quartz cuvet. The 
cuvet was placed in a cell holder of a Union high-speed UV spectro-
monitor Model SM-303, a cell chamber of which was thermostated at 
20.2 ±0.1 0C by circulating thermostated water. Heterocyclophane (7.4 
X 10"! to 3.0 X 10"5 M) was added to the above solution of the ester 
substrate to start the hydrolysis. The reaction was followed by moni­
toring the increase in the absorbance of phenol (p-nitrophenol, a-na-
phthol, /3-naphthol, and a-chloro-/3-naphthol) at 400, 321, 328, and 331 
nm, respectively. Each kinetic run followed pseudo-first-order kinetics 
up to the second half-life: correlation coefficients of the lines obtained 
were 0.9999-0.9770 (8 points). The dependence of pseudo-first-order 

rate constants on the heterocyclophane concentration was analyzed by 
the use of eq 2. 

Kinetic measurements for CTAB-catalyzed hydrolyses of ester sub­
strates (7b-c) were similarly carried out as described above under the 
following conditions of concentrations: ester substrate, 9.9 X 10"6 M; 
CTAB, 9.5 X 10~3 to 3.7 X 10"3 M. The effective concentration of 
micellar particles was calculated by the following equation 

[micellar particles] 
[CTAB] - [cmc] 
aggregation no. 

where a reported value of 5 X 10~5 M was used as the critical micellar 
concentration, [cmc], and a reported number, 61, was employed for the 
aggregation number. Treatment of kinetic data was the same as de­
scribed above for the heterocyclophane-catalyzed hydrolysis reactions. 

Temperature-Jump Experiments. Temperature-jump experiments 
were carried out with a Union rapid-reaction analyzer RA-1200. A 
solution of 0.5 X 10"4 M sodium hydroxynaphthalenecarboxylate (11 or 
12) and the water-soluble heterocyclophane (1.0 X 10"3 to 0.167 X 10"3 

M) in 0.067 M borate + 0.1 M KCl buffer solution at pH 7.0 was put 
into the temperature-jump cell, and the cell compartment was thermo­
stated at 27 0C by circulating thermostated water. Under a standard 
experimental condition, a 27-kV voltage was applied to raise the tem­
perature of the solution by ca. 2 0C in a few microseconds. The signal 
output from the photomultiplier was recorded with a Hitachi memori-
scope V-038. 
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Conceptually, the [2,3]-Witting rearrangement1 of bis-allylic 
ethers is a convenient, general vehicle to l,5-dien-3-ols which are 
valuable as substrates for the oxy-Cope rearrangement.2 In order 
to establish the feasibility of such an approach within unsym­
metrical frameworks, however, many questions must be elucidated 
which remain largely unexplored.3,4 There are positional am­
biguities at both the migrating termini in terms of the possibilities 
for [2,3] vs. [1,2] shifts and for a vs. a' lithiation, providing at 

(1) For reviews on carbanion rearrangements, see: SchSUkopf, U. Angew. 
Chem., Int. Ed. Engl. 1970, 9, 763. Cram, D. J. "Fundamentals of Carbanion 
Chemistry"; Academic Press: New York, 1965; Chapter VI. 

(2) Recent reviews include: Marvell, E. N.; Whalley, W. In "Chemistry 
of the Hydroxy Group", Patai, S., Ed.; Interscience: New York, 1971; Vol. 
2; Chapter 13. Bennett, G. B. Synthesis 1977, 589. 

(3) For the [2,3]-Wittig rearrangement of symmetrical bis-allylic ethers 
with or without the [l,2]-shift, see: (a) Baldwin, J. E.; DeBernard, J.; Patrick, 
J. E. Tetrahedron Lett. 1970, 353. (b) Rautenstrauch, V. Chem. Commun. 
1970, 4. 

(4) For examples of closely related Wittig variations, see: (a) SchSllkopf, 
U.; Fellenberger, K.; Rizk, M. Liebigs Ann. Chem. 1970, 734, 106. (b) 
Baldwin, J. E.; Patrick, J. E. J. Am. Chem. Soc. 1971, 93, 3556. (c) 
Schulte-Elte, K. H.; Rautenstrauch, V.; Ohloff, G. HeIv. Chim. Acta 1971, 
54, 1805. (d) Garbers, C. F.; Scott, F. Tetrahedron Lett. 1976, 507. (e) 
Wada, M.; Fukui, A.; Nakamura, H.; Takei, H. Chem. Lett. 1977, 557. 
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least four reaction pathways (Scheme 1). Furthermore, stereo­
chemical problems also arise when the migrating allylic moiety 
has substituents at the a and/or 7 position; the [2,3]-process might 
produce geometric and/or diastereomeric isomers. 

As part of our general interest in the synthetic potential of 
[2,3]-sigmatropic rearrangements,6 we have now systematically 
studied carbanion rearrangements of unsymmetrical bis-allylic 
ethers having different substitution patterns. Herein we wish to 
report that these rearrangements proceed exclusively in a 
[2,3]-sigmatropic fashion with remarkably higher levels of regio-
and stereoselectivity than previously anticipated. The genuine 
[2,3]-Wittig process provides an exceedingly facile procedure for 
regio- and stereocontrolled synthesis of a broad variety of 1,5-
dien-3-ols from nonidentical allylic alcohols which in many in­
stances will be superior to current procedures.7 

(5) In addition, a [l,4]-shift is also allowed by orbital symmetry. For 
examples of the [1,4]-shift under Wittig conditions, see: Felkin, H.; Tambut6, 
A. Tetrahedron Lett. 1969,821. Cherest, M.; Felkin, H.; Frajerman, C. Ibid. 
1977, 3489. Felkin, H.; Frajerman, C. Ibid. 1977, 3485. Rautenstrauch, V. 
HeIv. Chim. Acta 1972, 55, 594. 

(6) Nakai, T.; Mikami, K. Chem. Lett. 1979,1081. Nakai, T.; Mikami, 
K.; Taya, S.; Kimura, Y.; Mimura, T. Tetrahedron Lett. 1981, 22, 69. 
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Table I. Wittig Rearrangement of Unsymmetrical Bis-Allylic Ethersa 
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entry substrate (E:Z)b product0 (% yield)d regioselectivity 
stereoselectivity' 

threo:erythro [E:Z] 

^ o ^ 
OH 

DH I 
OH (77) 

(81) 

10 

J - * 0 ^ 

(93^r;?) 

(17'T83) I 

^ * ^ 0 ~ ° ^ 

( 86": 14 ) 

(93 T 7) 1 

OH 

OH 

OH 

(88) 

(60) 

(70) 

(71) 

^Y^-
OH 

a-[2,3] only 

a/c/-[2,3]* = 4:3 

a-[2.3] only 

a-[2,3] only 

a-[2,3] only 

a/a'-[2,3] = 1:2 

a-[2,3] only 

a-[2,3] only 

(E, >95%) 

79 
(84 
12 
(8 

21 
16)h 

88 
92)h 

[E,>95%] 

67:33 
(72:28)h 

16:84 
(5:95)h 

50:50 

a All reactions were run as follows. A 1.4 M solution of n-BuLi in hexane (1.0 mL/1.0 mmol) was added dropwise to a substrate solution in 
THF (1.0 mL/1.0 mmol) at -85 0C under N2 and stirred at that temperature for 5-8 h. The mixture was then allowed to warm to 0 CC and 
quenched with hydrochloric acid. b Refers to the geometric ratio of the allylic alcohol or chloride employed. c All products were fully 
characterized by IR and NMR spectra (see the supplementary material). d Distilled yields of isomeric mixtures, not optimized yet. e For 
the notation, see Scheme I. f Determined by a combination of GLC and NMR analysis with the aid of a NMR shift reagent. 8 In this case, 
the [1,2]- and [2,3]-shifts are indistinguishable. h Refers to the calculated value based on 100% of geometric purity for the substrate. 

The rearrangement of bis-allylic ethers (1), readily prepared 
from appropriate combinations of allylic alcohols and allylic 
halides, is accomplished in tetrahydrofuran (THF) at -85 0C by 
using a commercial solution of butyllithium in hexane as the base, 
affording l,5-dien-3-ols (2) in high yields. The examples are given 
in Table I. 

Inspection of Table I reveals several characteristic features of 
the present [2,3]-Wittig variant which are synthetically valuable. 
(1) The carbanion rearrangement readily occurs at that low 
temperature, and the product mixture is free from detectable 
amounts of the [1,2]- and [1,4]-rearrangement products.5 (2) The 
crucial regiochemistry in the lithiation step8 is remarkably con­
trolled by the difference in total number of a- and 7-alkyl sub-
stituents between the two allylic moieties, giving mostly the single 
regioisomer resulting from the exclusive lithiation on the less 
substituted allylic moiety. In other words, either a- or 7-alkyl 
substitution considerably depresses the lithiation, while the /3-alkyl 
group has little effect as expected. A direct comparison of the 
depressive effect of a vs. 7 substituent (entry 8) interestingly 
indicates the latter to be greater. (3) The examples of entries 1 
and 5 can be viewed as the otherwise difficult preparations of 
6-substituted l,5-dien-3-ols, since reactions of a,0-unsaturated 
carbonyl compounds with crotyl-type organometallic reagents 

(7) (a) For additions of allylic organometallic reagents to a,|8-unsaturated 
carbonyl compounds, e.g., MgX, see: Viola, A.; Iorio, I. J. J. Am. Chem. Soc. 
1976, 89, 3462. Zn: Grandemar, M. Bull. Soc. Chim. Fr. 1962, 974. Si: 
Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1978, 498. An exception: 
Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 1295. (b) For additions of 
vinylic or actylenic organometallic reagents to /9,7-unsaturated carbonyl 
compounds; e.g., vinylic Grignard: Bttchi, G.; Wuest, H. / . Am. Chem. Soc. 
1974, 96, 7573. Sodium acetylide: Fujita, Y.; Wada, F.; Onishi, T.; Nishida, 
T. Chem. Lett. 1977, 943. 

(8) The present reaction is apparently free from the well-known complexity 
in terms of a vs. y reactivity of (alkoxyallyl)lithiums. For this problem, see: 
Still, W. C; Macdonald, T. L. J. Org. Chem. 1976, 41, 3620 and references 
therein. 

generally afford the 4-substituted l,5-dien-3-ols via complete allylic 
transposition.7" (4) In the rearrangment creating a new olefinic 
bond, a high E selectivity is obtained (entries 1 and 5). While 
this E selection is in sharp contrast to the Z selection recently 
reported for an entirely different [2,3]-Wittig variant,9 the observed 
stereoselectivity of the present variant is best explained by es­
sentially the same argument used to rationalize the comparable 
stereoselectivity observed with a variety of related [2,3]-sigma-
tropic rearrangements.6'10 (5) In the rearrangement generating 
new chiral centers, a high-to-moderate level of diastereoselection 
is obtained, depending on the substrate geometry (entries 3, 4, 
6, and 7); a high degree oferythro11 selectivity is achieved with 
the Z substrate whereas a moderate threo selectivity is obtained 
with the E substrate. 

Interestingly, we have also found that the dianion rearrangement 
of (iO-crotyl propargyl ether (3) exhibits a higher degree of threo 
selectivity while the Z substrate shows a comparable level of 
erythro selectivity as shown below. 

1) n-BuL 
(2 eq 

2) H 3 

E/Z = 93 

E/Z = 2 

0
 OH 6H OH 

Erythro-4 

7 

98 

Threo-4 

93 

12 

The stereochemistry of these diastereomers was unequivocally 

(9) Still, W. C; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927. 
(10) For a general review on the stereochemistry of [2,3]-sigmatropic 

rearrangement, see: Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1979, 
18, 563. 

(11) For the sake of convenience, we have used the prefixes threo and 
erythro according to the nomenclature of Heathcock: Heathcock, C. H.; Buse, 
C. T.; Kleschick, W. A.; Pirrung, M. C; Sohn, J. E.; Lampe, J. / . Org. Chem. 
1980, 45, 1066. 
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determined through NMR and GLC comparisons of their hy-
drogenation products (5) with an erythro-rich mixture inde­
pendently prepared by the reaction of 2-methylbutanal with ethyl 
or isopropyl Grignard reagent in which the stereochemistry of the 
major stereoisomer can be predicted by the Cram's rule.12"14 

X 
OHC 

^MgBr 

R=H1CH3 

+ 
OH 

Erythro-5 

OH 

Threo-5 

The observed degree of internal asymmetric induction is par­
ticularly noteworthy since no great degree of either threo or erythro 
selectivity has been reported yet for different [2,3]-sigmatropic 
variations10'15 except for the [2,3]-Wittig process3b of (Z)-crotyl 
benzyl ether exhibiting a high erythro selectivity.16 Regardless 
of the origin of the regio- and stereochemical features outlined 
here,17 the results of the present study anomalously expand the 
synthetic potential of the [2,3]-Wittig rearrangement. In par­
ticular, the high degree of diastereoselection provides the synthetic 
chemists with a powerful weapon with which to attack the current 
problem of acyclic stereocontrol.15 Further synthetic applications 
of the [2,3]-Wittig rearrangements are in progress. 

Supplementary Material Available: Spectral and physical 
properties for rearrangement products (5 pages). Ordering in­
formation is given on any current masthead page. 

(12) Morrison, J. D.; Mosher, H. S. "Asymmetric Organic Reactions"; 
Prentice-Hall: Englewood Cliffs, NJ, 1971; Chapter 3. 

(13) 5 (R = H): 77% yield; 66:34 erythro/threo (by NMR assay); GLC 
(PEG 2OM, 100 0C), tR 28.8 min (major) and 29.8 min (minor). 5 (R = 
CH3): 79% yield; ca. 2.0 erythro/threo (by GLC and NMR assay); GLC 
(PEG 2OM, 80 0C), tR 47.2 min (major) and 48.7 min (minor). 

(14) The stereochemical assignment for 5 (R = H) was further confirmed 
by NMR and GLC comparisons with an authentic threo-5 (R = H) inde­
pendently prepared via reaction of fra«s-3,4-epoxyhexane with lithium di-
methylcuprate. 

(15) For an excellent review on acyclic stereocontrol, see: Bartlett, P. A. 
Tetrahedron 1980, 36,2. See also: Jemison, R. W.; Laird, T.: Ollis, W. D.; 
Sutherland, I. O. J. Chem. Soc, Perkin Trans 1 1980, 1436. 

(16) In contrast, however, the E counterpart has exhibited a low degree 
of threo selectivity.311'4* 

(17) A detailed discussion will be reported in a full paper. 
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There has been much recent interest in the oxidative dehy-
drogenation of coordinated amines to the corresponding imines 
or nitriles.1"3 Many of these studies have involved ruthenium 
as the metal center, and although the formation of complexes 
containing the a^-diimine moiety has been relatively common,1 

complexes containing coordinated simple monodentate imines have 
not been isolated.1'2 

We have studied the oxidation of isopropylamine in the complex 
[Ru(tpy)(bpy)(NH2CHMe2)]

2+ (tpy = 2,2':6',2"-terpyridine; bpy 
= 2,2'-bipyridine). Two major processes occur: a two-electron 
oxidation yielding the corresponding imine complex [Ru(tpy)-
(bpy)(NH=CMe2)]

2+, which in turn undergoes a further two-

(1) Brown, G. M.; Weaver, T. R.; Keene, F. R.; Meyer, T. J. Inorg. Chem. 
1976, 15, 190-196 and references therein. 

(2) Diamond, S. E.; Tom, G. M.; Taube, H. J. Am. Chem. Soc. 1975, 97, 
2661-2664. 

(3) Keene, F. R.; Salmon, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1976, 
98, 1884-1889. 
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Figure 1. Cyclic voltammograms (200 mV/s) of [Ru(tpy)(bpy)(iso-
propylamine)]2+ (A) and of the two-electron (B) and four-electron (C) 
oxidation products in acetonitrile solution.4 

electron oxidation to yield a product characterized as [Ru-
(tpy)(bpy)(NCMe2)]

3+. The nature of these two oxidation 
products is significant, since the two-electron oxidation product 
represents the first isolated monodentate imine complex of ru­
thenium, and the structure of the four-electron oxidation product 
is novel in ruthenium chemistry, as it can be formulated to contain 
an N-bound isopropylideneamide anion. 

In their study of the oxidation of benzylamine in [Ru-
(NH3)5(PhCH2NH2)]

2+ to the benzonitrile complex, Diamond 
et al.2 observed an intermediate which they assumed to be the 
imine species. In the same work, the oxidation of [Ru(NH3)5-
(cyclohexylamine)]3+ yielded [Ru(NH3)6]

2+ and cyclohexanone, 
presumably by hydrolysis of the coordinated imine complex 
generated by dehydrogenation. Brown et al.1 also claimed the 
generation in situ of nonconjugated chelated diimines in the ox­
idation of [Ru(bpy)2(tn)]2+ and [Ru(bpy)2(aepy)]2+ (tn = 1,3-
propanediamine; aepy = 2-(aminoethyl)pyridine). In none of these 
cases could the imine complex be isolated. 

A spectrophotometric titration of the oxidation of [Ru(tpy)-
(bpy)(NH2CHMe2)]

2+ by Ce(IV) in 2 M H2SO4 indicates an 
overall four-electron oxidation consisting of two separate two-
electron processes which are consecutive. Spectra taken during 
exhaustive electrolyses (platinum gauze electrode) in 0.1 M HCl 
(at 0.90 V vs. SSCE) and acetonitrile (at 1.10 V vs. SSCE) 
indicate similar results. The overall spectrophotometric and 
coulometric n values were slightly less than 4.0 (viz., 3.6-3.8). 
The second two-electron process can be reversed electrochemically 
(coulometry at 0.50 V in 0.1 M HCl, 0.55 V in acetonitrile), with 
n for the reduction being exactly half the value for the overall 
oxidation. The two- and four-electron oxidation products were 
isolated by precipitation as the hexafluorophosphate salts and 
purified by ion-exchange chromatography on SP-Sephadex. 

For the two-electron oxidation product, the visible spectrum 
(MLCT transitions) in 2 M H2SO4 has €474

ma* 8000 (cf. «48rM 

8800 for the parent isopropylamine species). Cyclic voltammetry 
in acetonitrile solution4 revealed Ep,a = 1.10 V (compared with 

(4) Support electrolyte tetra-n-ethylammonium hexafluorophosphate; 
platinum bead working electrode; saturated sodium chloride calomel electrode 
(SSCE) as reference. 
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